重庆环洁智科技 - 工业产品设计,电路研发生产一站式服务

行业洞察
公司信息

公司:重庆环洁智创新科技有限公司

主营:产品研发设计、模具加工生产

手机:15978927637

地址:重庆茶园经开区美林路16号昌龙国际A9栋5楼


行业洞察
常见问题

电路板设计中如何处理电路设计风险?

作者:艾瑞智科技 发布时间:2023-08-28 14:10点击:

凯时kb优质运营商 -(中国)集团_产品6155

今天给各位分享电路板设计中如何处理电路设计风险?的知识,其中也会对pcb设计中晶体电路设计的注意事项是哪些进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

两个电源进入线路板会怎么样

如果两个电源同时进入线路板,有以下几种可能的结果:1.短路:如果两个电源的电压不同,且线路板上没有适当的保护措施,可能会发生短路。此时,电流将从高电压电源流向低电压电源,可能导致电源过载、线路板受损或发生火灾等问题。2.竞争和干扰:两个电源可能会竞争地提供电流给线路板,导致电压不稳定或电力波动。这可能会对线路板上的电子元件和设备造成损坏。3.逆流:如果线路板上的电源管理电路或元件不当,可能会导致电流逆向流动,即从线路板上的负载往电源回流。这可能会损坏电源、负载和线路板上的其他电子元件。4.火灾风险:如果线路板上的电源管理电路或导线出现故障,可能会导致过大的电流通过线路板,引发火灾风险。因此,在设计和使用线路板时,需要根据实际需求和电气设备的规格,合理选择和配置电源,并采取适当的保护措施,以确保电源的安全稳定运行。

pcb设计中需要注意哪些问题

布线拓朴对信号完整性的影响当信号在高速PCB板上沿传输线传输时可能会产生信号完整性问题。意法半导体的网友tongyang问:对于一组总线(地址,数据,命令)驱动多达4、5个设备(FLASH、SDRAM等)的情况,在PCB布线时,是总线依次到达各设备,如先连到SDRAM,再到FLASH……还是总线呈星型分布,即从某处分离,分别连到各设备。这两种方式在信号完整性上.对此,李宝龙指出,布线拓扑对信号完整性的影响,主要反映在各个节点上信号到达时刻不一致,反射信号同样到达某节点的时刻不一致,所以造成信号质量恶化。一般来讲,星型拓扑结构,可以通过控制同样长的几个分支,使信号传输和反射时延一致,达到比较好的信号质量。在使用拓扑之间,要考虑到信号拓扑节点情况、实际工作原理和布线难度。不同的Buffer,对于信号的反射影响也不一致,所以星型拓扑并不能很好解决上述数据地址总线连接到FLASH和SDRAM的时延,进而无法确保信号的质量;另一方面,高速的信号一般在DSP和SDRAM之间通信,FLASH加载时的速率并不高,所以在高速仿真时只要确保实际高速信号有效工作的节点处的波形,而无需关注FLASH处波形;星型拓扑比较菊花链等拓扑来讲,布线难度较大,尤其大量数据地址信号都采用星型拓扑时。焊盘对高速信号的影响在PCB中,从设计的角度来看一个过孔主要由两部分组成:中间的钻孔和钻孔周围的焊盘。有名为fulonm的工程师请教嘉宾焊盘对高速信号有何影响,对此,李宝龙表示:焊盘对高速信号有影响,其影响类似器件的封装对器件的影响。详细的分析,信号从IC内出来以后,经过邦定线、管脚、封装外壳、焊盘、焊锡到达传输线,这个过程中的所有关节都会影响信号的质量。但实际分析时,很难给出焊盘、焊锡加上管脚的具体参数。所以一般就用IBIS模型中的封装的参数将他们都概括了,当然这样的分析在较低的频率上可以接收,但对于更高频率信号更高精度仿真就不够精确。现在的一个趋势是用IBIS的V-I、V-T曲线描述Buffer特性,用SPICE模型描述封装参数。如何抑制电磁干扰PCB是产生电磁干扰(EMI)的源头,所以PCB设计直接关系到电子产品的电磁兼容性(EMC)。如果在高速PCB设计中对EMC/EMI予以重视,将有助缩短产品研发周期加快产品上市时间。因此,不少工程师在此次论坛中非常关注抑制电磁干扰的问题。例如,无锡祥生医学影像有限责任公司的舒剑表示,在EMC测试中发现时钟信号的谐波超标十分严重,请问是不是要对使用到时钟信号的IC的电源引脚做特殊处理,目前只是在电源引脚上连接去耦电容。在PCB设计中还有需要注意哪些方面以抑止电磁辐射呢?对此,李宝龙指出,EMC的三要素为辐射源,传播途径和受害体。传播途径分为空间辐射传播和电缆传导。所以要抑制谐波,首先看看它传播的途径。电源去耦是解决传导方式传播,此外,必要的匹配和屏蔽也是需要的。李宝龙也在回答WHITE网友的问题时指出,滤波是解决EMC通过传导途径辐射的一个好办法,除此之外,还可以从干扰源和受害体方面入手考虑。干扰源方面,试着用示波器检查一下信号上升沿是否太快,存在反射或Overshoot、undershoot或ringing,如果有,可以考虑匹配;另外尽量避免做50%占空比的信号,因为这种信号没有偶次谐波,高频分量更多。受害体方面,可以考虑包地等措施。RF布线是选择过孔还是打弯布线对此,李宝龙指出,分析RF电路的回流路径,与高速数字电路中信号回流不太一样。二者有共同点,都是分布参数电路,都是应用Maxwell方程计算电路的特性。但射频电路是模拟电路,有电路中电压V=V(t)、电流I=I(t)两个变量都需要进行控制,而数字电路只关注信号电压的变化V=V(t)。因此,在RF布线中,除了考虑信号回流外,还需要考虑布线对电流的影响。即打弯布线和过孔对信号电流有没有影响。此外,大多数RF板都是单面或双面PCB,并没有完整的平面层,回流路径分布在信号周围各个地和电源上,仿真时需要使用3D场提取工具分析,这时候打弯布线和过孔的回流需要具体分析;高速数字电路分析一般只处理有完整平面层的多层PCB,使用2D场提取分析,只考虑在相邻平面的信号回流,过孔只作为一个集总参数的R-L-C处理。

锂电池电路板好坏怎么检测

电路板好坏的检测方法有很多种,但是最常用的是电路板短路检测和电路板通路检测。首先通过显微镜等工具检查电路板的外观是否有明显的损伤、裂痕、氧化等情况,然后使用万用表等工具进行电路板短路和通路的检测。其中,短路检测是检测电路板上两个或多个电路之间是否存在带电导体连接,而通路检测是检测电路板上的通路是否畅通,从而保证整个电路板的正常工作。如果电路板出现问题,可以采用更换电路元件、修补损坏的电路板或重新设计电路板等方法进行处理。

PCB设计有哪些特别需要注意的点

PCB设计的基本原则

PCB设计的好坏对电路板的性能有很大的影响,因此在进行PCB设计的时候,必须遵循PCB设计的一般原则。

首先,要考虑PCB的尺寸大小,PCB尺寸过大时,印制线路长,阻抗增加,抗噪能力下降,成本增加;PCB尺寸过小时,则散热不好,且临近线容易受干扰。在确定PCB尺寸后,再确定特殊元件的位置。最后根据电路的功能单元,对电路的全部元件进行布局。

设计流程:

在绘制完电路原理图之后,还要进行PCB设计的准备工作:生成网络报表。

规划PCB板:首先,我们要对设计方案有一个初步的规划,如电路板是什么形状,它的尺寸是多大,使用单面板还是双面板或者是多层板。这一步的工作非常重要,是确定电路板设计的框架。

设置相关参数:主要是设置元件的布置参数、板层参数和布线参数等。

导入网络报表及元件封装:网络报表相当重要,是原理图设计系统和PCB设计系统之间的桥梁。自动布线操作就是建立在网表的基础上的。元件的封装就是元件在PCB板上的大小以及各个引脚所对应的焊盘位置。每个元件都要有一个对应的封装。

元件布局:元件的布局可以使用Protel软件自动进行,也可以进行手动布局。元器件布局是PCB板设计的重要步骤之一,使用计算机软件的自动布局功能常常有很多不合理的地方,还需要手动调整,良好的元件布局对后面的布线提供方便,而且可以提高整板的可靠性。

布线:根据元件引脚之间的电气联系,对PCB板进行布线操作。布线有自动布线和手动布线两种方式。自动布线是根据自动布线参数设置,用软件在PCB板的一部分或者全部范围内进行布线,手动布线是用户在PCB板上根据电气连接进行手工布线。自动布线的结果并不是最优的,存在很多缺陷和不合理的地方,而且并不能保证每次都能百分之百完成自动布线任务。而手动布线的工作量过于繁重,一个大的PCB板往往要耗费巨大的工作量,因此需要灵活运用手工和自动相结合的方式进行布线。

完成布线操作后,需要对PCB板进行补泪滴、打安装孔和覆铜等操作,以完成PCB板的后续工作。

最后在通过设计规则检查之后,就可以保存并输出PCB文件了。

3.2注意事项

3.2.1布局

在确定特殊元件的位置时要遵循以下原则:

1.尽可能缩短高频元件的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元件不能靠得太近,输入和输出元件应相互远离。

2.某些元件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引起意外短路。带强电的元件应尽量布置在调试时手不宜触及的地方。

3.质量超过15g的元件,应当用支架固定,然后焊接。那些又大又重、发热量又多的元件,不宜装在PCB上,而应安装在整机的机箱上,且考虑散热问题。热敏元件应远离发热元件。

4.对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。

5.应留出印制板的定位孔和固定支架所占用的位置。

根据电路的功能单元对电路的全部元件进行布局时,要符合以下原则:

1.按照电路的流程安排各个功能电路单元的位置,使布局便于信号流畅,并使信号尽可能保持一致的方向。

2.以每个功能电路的核心元件为中心,围绕它来布局。元件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元件之间的引线和连接。

3.在高频下工作的电路,要考虑元件之间的分布参数。一般电路应尽可能使元件平行排列。这样不但美观,而且焊接容易,易于批量生产。

4.位于电路板边缘的元件,离电路板边缘一般小于2mm。电路板的最佳形状为矩形,长宽比为3:2(或4:3)。电路板面尺寸过大时,应考虑板所受到的机械强度。

3.2.2布线

1.连线精简原则

连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,如蛇形走线等等。

2.安全载流原则

铜线宽度应以自己能承受的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜箔厚度)、容许温升等。

电磁抗干扰原则

电磁抗干扰设计的原则比较多,例如铜膜线的应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能),双面板两面的导线应相互斜交或者弯曲走线,尽量避免平行走线,

减少寄生耦合等。

4.安全工作原则

要保证安全工作,例如保证两线最小安全间距要能承受所加电压峰值;高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。以上是一些基本的布线原则,布线很大程度上和设计者的设计经验有关。

3.2.3焊盘大小

焊盘的直径和内孔尺寸:焊盘的内孔尺寸必须从元件引线直径、公差尺寸以及焊锡层厚度、孔径公差、孔金属电镀层等方面考虑。焊盘的内孔一般不小于0.6mm,因为太小的孔开模冲孔时不易加工。通常情况下以金属引脚加上0.2mm作为焊盘内孔直径,焊盘的直径取决

于内孔直径。

有关焊盘的其他注意事项:

焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。焊盘的补泪滴:当与焊盘的连接走线较细时,要将焊盘与走线之间的连接设计成泪滴状,这样的好处是焊盘不容易起皮,增加了连接处的机械强度,使走线与焊盘不易断开。相邻的焊盘要避免成锐角或大面积的铜箔,成锐角会造成波峰焊困难,大面积铜箔会因散热过快导致不易焊接。

3.2.4PCB的抗干扰措施

PCB的抗干扰设计与具体电路有着密切的关系,这里介绍一下PCB抗干扰设计的常用措施。

1电源线设计。根据PCB板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,使电源线、地线的走向和数据传递的方向不一致,这样有助于增强抗噪声能力。

2地线设计原则:

数字地与模拟地分开。若PCB板上既有逻辑电路又有模拟电路,应使它们尽量分开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状的大面积铜箔。接地线应尽量加粗。若接地线用很细的线条,则接地电位随电流的变化而变化,使抗噪能力降低。因此应将接地线加粗,使它能通过三倍于PCB上的允许电流。如有可能,接地线宽度应在2~3mm以上。

接地线构成闭环路。有数字电路组成的印刷板,其接地电路构成闭环能提高抗噪声能力。

3大面积覆铜

所谓覆铜,就是将PCB上没有布线的地方,铺满铜膜。PCB上的大面积覆铜有两种作用:一为散热;另外还可以减小地线阻抗,并且屏蔽电路板的信号交叉干扰以提高电路系统的抗干扰能力。

3.2.5去耦电容配置

在PCB板上每增加一条导线,增加一个元件,或者增加一个通孔,都会给整个PCB板引入额外的寄生电容,因此在对PCB板进行设计的时候,应该在电路板的关键部位安装适当的去耦电容。

安装去耦电容的一般原则是:

1.在电源的输入端配置一个10~100μF的电解电容器。

2.每一个集成电路芯片都应配置一个0.01pF的电容,也可以几个集成电路芯片合起来配置一个10pF的电容。

3.对于抗噪能力弱的元件,如RAM、ROM等,应在芯片的电源线与地线之间直接接入去耦电容。

4.配置的电容尽量靠近被配置的元件,减少引线长度。

5.在有容易产生电火花放电的地方,如继电器,空气开关等地方,应该配置RC电路,以便吸收电流防止电火花发生。

3.3设计规则检查

对布线完毕的电路板必须要进行DRC(DesignRuleCheck)检验,通过DRC检查可以查找出电路板上违反预先设定规则的行为,以便于修改不合理的设计。一般检查有一下几个方面:

1.检查铜膜导线、焊盘、通孔等之间的距离是否大于允许的最小值。

2.不同的导线之间是否有短路现象发生。

3.是否有些连线没有连接好,或者导线中间有中断现象发生,或者PCB板上存在未清除干净的废线。

4.各个导线的宽度是否满足要求,尤其是电源线和地线,能加宽的地方一定要加宽,以减小阻抗。

5.导线拐角的地方不能形成锐角或者直角,对不理想的地方进行修改。

6.所有通孔、焊盘的大小是否满足设计要求。

pcb设计中晶体电路设计的注意事项是哪些

对于电路中的晶体部分主要要做好布局,注意晶体与敏感电路模块的布局,与信号的隔离,信号线不要靠近晶体,避免被干扰。绘图时在晶体周围不要覆铜皮。晶体到器件之间的走线不要通过过孔换层;

电路板需要哪些保护电路

电路板需要添加的保护电路因具体情况而异,但下面列出了一些常见的保护电路:

1.过电压保护:过电压保护电路通常会包括放电二极管或MOSFET、稳压二极管或开关电源等,用于防止因异常电压或电源过载而对电路造成损坏或安全隐患。

2.过流保护:过流保护电路通常会包括保险丝、熔断器、电流限制器、MOSFET或电压调节器等,用于防止因电流过大而对电路造成损坏或安全隐患。

3.反向保护:反向保护电路通常会包括二极管、MOSFET等,用于防止电路被反向连接时对电路造成损坏。

4.过温保护:过温保护电路通常会包括热敏电阻、温度传感器等,用于防止电路过热而对电路造成损坏。

5.静电保护:静电保护电路通常会包括稳压二极管、TVS二极管等,用于防止因静电放电对电路造成损害。

以上仅是一些常见的保护电路,如果您需要在自己的电路板上添加保护电路,需要具体根据电路板应用场景和实际需求进行设计。同时,在进行电路板设计时,还需要注意防止电路干扰、波动、噪声等问题,以保证电路板的稳定性和可靠性。

如何在PCB设计中避免焊接桥

首先解释一下什么是PCB焊接桥:他是指电路板上并未设计为电连接的两个点被PCB焊料连接在一起。就形成了焊接桥。

除了我们在焊接工艺上改进在其实对PCB设计很关键

1.比如通孔的一些像TO92的三级管,他们的引脚间距很小我们要设计合理的焊盘间距和焊盘尺寸如下图所示,焊盘间距扩大。

2.元器件焊盘间距要合适特别是要过回流焊的,会特别是对那些0402和0603封装的小器件,由于锡膏在高温会产生像外的张力,造成器件错位。

3.像小的焊接器件如0603和0805等对一端普通走线,另一端大面积铺铜不要直接连接,会造成元器件立碑。

4.对元器件布局特别是对小器件,要保证焊盘间距。防止连焊。

5.对SOP封装的器件过波峰焊,建议多画4个焊盘,这样可以保证让容易连焊的4个红色区域移到黑色标记的焊盘,这样可以减少二次焊接。

我暂时就想到这么多,欢迎大家交流一下经验

好了,文章到此结束,希望可以帮助到大家。

相关产品
凯时kb优质运营商 -(中国)集团
友情链接:天生赢家一触即发·凯发k8国际(中国)官方网站  AG官方登录入口·(中国)官方网站  凯发旗舰厅(中国区)官方网站  k8凯发(中国)天生赢家·一触即发  k8凯发_k8凯发·(中国)官方网站  凯发·k8国际(中国)官方网站-首页登录  AG真人(官网)平台-AG真人官方网站-APP STORE  k8凯发(中国)天生赢家·一触即发  K8·凯发(中国)天生赢家·一触即发  天生赢家一触即发·凯发k8国际(中国)官方网站