公司:重庆环洁智创新科技有限公司
主营:产品研发设计、模具加工生产
手机:15978927637
地址:重庆茶园经开区美林路16号昌龙国际A9栋5楼
PCB设计中如何考虑热管理问题?(PCBA夹具要求)
其实PCB设计中如何考虑热管理问题?的问题并不复杂,但是又很多的朋友都不太了解PCBA夹具要求,因此呢,今天小编就来为大家分享PCB设计中如何考虑热管理问题?的一些知识,希望可以帮助到大家,下面我们一起来看看这个问题的分析吧!
PCB线路是用什么技术
PCB线路是由印刷电路板制造技术来完成。制造过程中先在非导电的基板上涂上覆铜层,然后通过光绘、腐蚀等工艺制作出电路图案。接着,通过电镀等方法使铜层增厚,并在需要的位置上布置焊盘、电解金手指等元件。然后再进行钻孔、埋板等工序,最后通过清洗、检测等环节完成整个PCB线路的制造。这种技术能够高效、精准地制造出复杂的电路板,并在电子产品中发挥重要的作用。
PCBA夹具要求
PCBA夹具是用于固定和连接电子元件的夹具。以下是一些常见的PCBA夹具要求:
1.尺寸与适配性:夹具的尺寸应与PCB板的尺寸相匹配,并确保夹持PCB板时能够稳固地固定和保护电子元件。
2.导电性:夹具应具备良好的导电性能,以确保在测试、调试或生产过程中能够有效地传递电信号。
3.稳定性和刚度:夹具应具备足够的稳定性和刚度,能够承受装配、测试和运输等环节中的各种力和振动,确保PCB板和电子元件的安全性。
4.热管理:夹具应考虑到电路板在工作过程中可能产生的热量,确保夹具的设计和材料选择能够有效地散热,防止温度过高对电子元件造成损害。
5.可调性:夹具应具备一定的可调性,能够适应不同尺寸和形状的PCB板,以及灵活应对不同的生产需求。
6.保护性:夹具应具备一定程度的防静电和防尘能力,以保护PCB板和电子元件免受静电和尘埃等外界环境的干扰。
7.操作便捷性:夹具的设计应考虑到操作人员的便捷性,方便装卸PCB板和电子元件,同时提供清晰的标识和指示,减少操作错误的可能性。
这些是一般情况下常见的PCBA夹具要求,具体的要求还需根据实际应用和生产流程来确定。
pcb设计中对于电源散热怎么处理
电源发热元器件通常是三极管和芯片,把三极管和芯片安装在散热片上,是一种比较好的方法,方便可行。
发热元件周围留有一定的散热空间,如果温度过高,可以散热片上加风扇。
热插拔的电路设计
热插拔电路设计应用非常广泛,作用是对热插拔的设备的元器件、芯片的一种保护措施。通常热插拔采用对信号进行隔离缓冲处理,采用244,245等器件来处理。并且在输入信号增加限流电阻和0.1uF滤波电容,对于输出信号通常直接由244,245输出即可。还有,除了过缓冲隔离之外,对于PCI接口等信号,通常还需要控制其上电,这也就是PCI总线的热插拔技术。
普通硬盘热插拔
以前的硬盘磁头不具备自动停靠的功能,在通电状态下磁头是“飞行”在盘片上面的,当系统断电之前,必须用一条叫“Park”的专用命令,来让磁头归位。否则,就有可能因为盘片瞬间停转而磁头来不及归位,造成盘片被磁头“铲伤”。
硬盘只有当读取数据的时候,磁头才会飞行在盘片表面。一读取动作结束,磁头立即自动归位停靠。同时,硬盘都具备延时断电的功能。即当系统供电突然丢失时,硬盘本身的控制器能自动探测到这个变化,然后强迫磁头停止当前读写指令的执行,并使磁头正常归位。这个设计大大加强了硬盘在意外断电情况下的安全系数。所以,盘片损伤的可能性其实是极低的。但这并不意味着热插拔硬盘是毫无危险的。因为开机状态下带电插拔硬盘,都会产生一个瞬时的冲击电流,过去我们认为这是造成硬盘带电插拔损坏的罪魁祸首。然而事实上,硬盘电源接口电路对这种瞬间电流的变化的宽容度是比较大的,绝大多数时候并不会导致硬盘电路板被烧毁。真正的危险来自于硬盘的数据线!在带电状态下插拔硬盘数据线,数据线上也会产生不正常的瞬间电流和压降,导致多个精密控制芯片被烧毁,这才是真正的“硬盘杀手”。
因此,只要我们能保证插拔电源线和数据线的顺序正确,即“插”硬盘的时候先接数据线,后接电源线;“拔”硬盘的时候正相反,先拔电源线,后拔数据线。这样,硬盘热插拔就不是天方夜谭!
应该感谢微软!是它把Windows操作系统的硬件在线识别和即时禁用功能做得如此完美,才让硬盘热插拔并且即插即用成为可能。首先,Windows系统可以绕过系统BIOS的设置,自行管理所有硬件,这是硬盘即插即用的第一要素。此外,在Windows设备管理器的“操作”菜单中,有一个“扫描检测硬件改动(A)”功能。当硬盘在开机状态下被插到系统中后,运行这个扫描检测功能,就能使新硬盘被操作系统识别并且正常使用。而在开机状态下拔出硬盘前,由于Windows会自动监测和向硬盘写数据,因此必须先将这个设备卸载,以使操作系统停止一切对该硬盘的操作,这时就可以安全地拔下硬盘了。
为验证以上观点,笔者亲手操作了一下,以下是操作步骤:将硬盘的跳线设置到CS(CableSelect,电缆选择)状态,插上硬盘数据线和电源线,在设备管理器的“操作”菜单中扫描检测硬件改动,完成之后,新硬盘即可以开始正常操作了。
热拔的步骤与此类似,先在设备管理器中找到该硬盘选择“卸载”,再将电源线拔下,确定硬盘已经停转后,即可拔下数据线。至此,硬盘被彻底热拔除。
由于是带电插拔,瞬间电流和电压的变化,有可能导致系统死机,但热插拔硬盘经笔者的长期操作验证从未导致过硬盘烧毁。不过这毕竟是非常规的硬盘安装和使用方法,硬盘存在热插拔和即插即用的可行性,但普通用户最好不要轻易模仿。
一般的外设,像软驱、光驱甚至是硬盘都可以使用热插拔,在安装时记住要先插数据线,后插电源线,拆下时刚好相反,只要您注意步骤正确,完全就可以把热插拔玩弄于股掌之间。
不过在硬盘热插拔时要注意,一定要使用同一个型号的硬盘,因为您硬盘的型号数据还存储在主板的BIOS里,这个是无法修改的,而软驱、光驱就没有这个问题了,您可以大胆的使用热插拔。
PCB设计有哪些特别需要注意的点
PCB设计的基本原则
PCB设计的好坏对电路板的性能有很大的影响,因此在进行PCB设计的时候,必须遵循PCB设计的一般原则。
首先,要考虑PCB的尺寸大小,PCB尺寸过大时,印制线路长,阻抗增加,抗噪能力下降,成本增加;PCB尺寸过小时,则散热不好,且临近线容易受干扰。在确定PCB尺寸后,再确定特殊元件的位置。最后根据电路的功能单元,对电路的全部元件进行布局。
设计流程:
在绘制完电路原理图之后,还要进行PCB设计的准备工作:生成网络报表。
规划PCB板:首先,我们要对设计方案有一个初步的规划,如电路板是什么形状,它的尺寸是多大,使用单面板还是双面板或者是多层板。这一步的工作非常重要,是确定电路板设计的框架。
设置相关参数:主要是设置元件的布置参数、板层参数和布线参数等。
导入网络报表及元件封装:网络报表相当重要,是原理图设计系统和PCB设计系统之间的桥梁。自动布线操作就是建立在网表的基础上的。元件的封装就是元件在PCB板上的大小以及各个引脚所对应的焊盘位置。每个元件都要有一个对应的封装。
元件布局:元件的布局可以使用Protel软件自动进行,也可以进行手动布局。元器件布局是PCB板设计的重要步骤之一,使用计算机软件的自动布局功能常常有很多不合理的地方,还需要手动调整,良好的元件布局对后面的布线提供方便,而且可以提高整板的可靠性。
布线:根据元件引脚之间的电气联系,对PCB板进行布线操作。布线有自动布线和手动布线两种方式。自动布线是根据自动布线参数设置,用软件在PCB板的一部分或者全部范围内进行布线,手动布线是用户在PCB板上根据电气连接进行手工布线。自动布线的结果并不是最优的,存在很多缺陷和不合理的地方,而且并不能保证每次都能百分之百完成自动布线任务。而手动布线的工作量过于繁重,一个大的PCB板往往要耗费巨大的工作量,因此需要灵活运用手工和自动相结合的方式进行布线。
完成布线操作后,需要对PCB板进行补泪滴、打安装孔和覆铜等操作,以完成PCB板的后续工作。
最后在通过设计规则检查之后,就可以保存并输出PCB文件了。
3.2注意事项
3.2.1布局
在确定特殊元件的位置时要遵循以下原则:
1.尽可能缩短高频元件的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元件不能靠得太近,输入和输出元件应相互远离。
2.某些元件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引起意外短路。带强电的元件应尽量布置在调试时手不宜触及的地方。
3.质量超过15g的元件,应当用支架固定,然后焊接。那些又大又重、发热量又多的元件,不宜装在PCB上,而应安装在整机的机箱上,且考虑散热问题。热敏元件应远离发热元件。
4.对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。
5.应留出印制板的定位孔和固定支架所占用的位置。
根据电路的功能单元对电路的全部元件进行布局时,要符合以下原则:
1.按照电路的流程安排各个功能电路单元的位置,使布局便于信号流畅,并使信号尽可能保持一致的方向。
2.以每个功能电路的核心元件为中心,围绕它来布局。元件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元件之间的引线和连接。
3.在高频下工作的电路,要考虑元件之间的分布参数。一般电路应尽可能使元件平行排列。这样不但美观,而且焊接容易,易于批量生产。
4.位于电路板边缘的元件,离电路板边缘一般小于2mm。电路板的最佳形状为矩形,长宽比为3:2(或4:3)。电路板面尺寸过大时,应考虑板所受到的机械强度。
3.2.2布线
1.连线精简原则
连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,如蛇形走线等等。
2.安全载流原则
铜线宽度应以自己能承受的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜箔厚度)、容许温升等。
电磁抗干扰原则
电磁抗干扰设计的原则比较多,例如铜膜线的应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能),双面板两面的导线应相互斜交或者弯曲走线,尽量避免平行走线,
减少寄生耦合等。
4.安全工作原则
要保证安全工作,例如保证两线最小安全间距要能承受所加电压峰值;高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。以上是一些基本的布线原则,布线很大程度上和设计者的设计经验有关。
3.2.3焊盘大小
焊盘的直径和内孔尺寸:焊盘的内孔尺寸必须从元件引线直径、公差尺寸以及焊锡层厚度、孔径公差、孔金属电镀层等方面考虑。焊盘的内孔一般不小于0.6mm,因为太小的孔开模冲孔时不易加工。通常情况下以金属引脚加上0.2mm作为焊盘内孔直径,焊盘的直径取决
于内孔直径。
有关焊盘的其他注意事项:
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。焊盘的补泪滴:当与焊盘的连接走线较细时,要将焊盘与走线之间的连接设计成泪滴状,这样的好处是焊盘不容易起皮,增加了连接处的机械强度,使走线与焊盘不易断开。相邻的焊盘要避免成锐角或大面积的铜箔,成锐角会造成波峰焊困难,大面积铜箔会因散热过快导致不易焊接。
3.2.4PCB的抗干扰措施
PCB的抗干扰设计与具体电路有着密切的关系,这里介绍一下PCB抗干扰设计的常用措施。
1电源线设计。根据PCB板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,使电源线、地线的走向和数据传递的方向不一致,这样有助于增强抗噪声能力。
2地线设计原则:
数字地与模拟地分开。若PCB板上既有逻辑电路又有模拟电路,应使它们尽量分开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状的大面积铜箔。接地线应尽量加粗。若接地线用很细的线条,则接地电位随电流的变化而变化,使抗噪能力降低。因此应将接地线加粗,使它能通过三倍于PCB上的允许电流。如有可能,接地线宽度应在2~3mm以上。
接地线构成闭环路。有数字电路组成的印刷板,其接地电路构成闭环能提高抗噪声能力。
3大面积覆铜
所谓覆铜,就是将PCB上没有布线的地方,铺满铜膜。PCB上的大面积覆铜有两种作用:一为散热;另外还可以减小地线阻抗,并且屏蔽电路板的信号交叉干扰以提高电路系统的抗干扰能力。
3.2.5去耦电容配置
在PCB板上每增加一条导线,增加一个元件,或者增加一个通孔,都会给整个PCB板引入额外的寄生电容,因此在对PCB板进行设计的时候,应该在电路板的关键部位安装适当的去耦电容。
安装去耦电容的一般原则是:
1.在电源的输入端配置一个10~100μF的电解电容器。
2.每一个集成电路芯片都应配置一个0.01pF的电容,也可以几个集成电路芯片合起来配置一个10pF的电容。
3.对于抗噪能力弱的元件,如RAM、ROM等,应在芯片的电源线与地线之间直接接入去耦电容。
4.配置的电容尽量靠近被配置的元件,减少引线长度。
5.在有容易产生电火花放电的地方,如继电器,空气开关等地方,应该配置RC电路,以便吸收电流防止电火花发生。
3.3设计规则检查
对布线完毕的电路板必须要进行DRC(DesignRuleCheck)检验,通过DRC检查可以查找出电路板上违反预先设定规则的行为,以便于修改不合理的设计。一般检查有一下几个方面:
1.检查铜膜导线、焊盘、通孔等之间的距离是否大于允许的最小值。
2.不同的导线之间是否有短路现象发生。
3.是否有些连线没有连接好,或者导线中间有中断现象发生,或者PCB板上存在未清除干净的废线。
4.各个导线的宽度是否满足要求,尤其是电源线和地线,能加宽的地方一定要加宽,以减小阻抗。
5.导线拐角的地方不能形成锐角或者直角,对不理想的地方进行修改。
6.所有通孔、焊盘的大小是否满足设计要求。
PCB冷热循环的测试条件是什么
要问你的板材供应商,他使用的材料MOT(最高操作温度)是多少,正常FR4是130℃,这种的话105℃对PCB本身来说是可以承受的,但是你要考虑其他零件,以及会不会造成人员安全问题.关于低温,也是跟板子本身使用的材料有关,正常主流FR4材料做-45℃~125℃冷热循环(半小时冷半小时热),1000次是没问题的,但你要考虑环境结霜,其他零件,焊点脆裂等等问题.PCB用的板材是有差别的,一样有奔驰宝马保时捷,所以有特别的要求,要向供应商提出来,供应商可以根据你的需求,选择合适的材料.
pcb设计标准规范
PCB设计纷繁复杂,各种意料之外的因素频频来影响整体方案的达成,如何能驯服性格各异的零散部件?怎样才能画出一份整齐、高效、可靠的PCB图?今天让我们来盘点一下。
PCB设计看似复杂,既要考虑各种信号的走向又要顾虑到能量的传递,干扰与发热带来的苦恼也时时如影随形。但实际上总结归纳起来非常清晰,可以从两个方面去入手:
说得直白一些就是:“怎么摆”和“怎么连”。
听起来是不是非常easy?让我们先来梳理下“怎么摆”:
1、遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局。这个和吃自助餐的道理是一样的:自助餐胃口有限先挑喜欢的吃,PCB空间有限先挑重要的摆。
2、布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件。布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;去耦电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短;减少信号跑的冤枉路,防止在路上出意外。
先大后小,先难后易
3、元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元器件周围要有足够的空间,弄得太挤局面往往会变得很尴尬。
4、相同结构电路部分,尽可能采用“对称式”标准布局;按照均匀分布、重心平衡、版面美观的标准优化布局。
均匀分布、重心平衡
5、同类型插装元器件在X或Y方向上应朝一个方向放置。同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
统一极性布局
6、发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
OK,本文到此结束,希望对大家有所帮助。